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Introduction

Many developments in lower-dimensional (Jackiw-Teitelboim (JT))
gravity:

I Much focus has been on spectral properties (partition
function, spectral form factor) exhibiting chaotic features
Higher genus and multi-boundary amplitudes: important to
understand very-late time behavior, replica wormholes . . .
Saad-Shenker-Stanford ’18, ’19, Stanford-Witten ’19 ... Almheiri et al. ’19, Penington et al. ’19 ...

I Here we want to focus on correlators of (local) boundary
probes: Exact quantum solution of boundary correlators
Bagrets-Altland-Kamenev ’16, ’17, TM-Turiaci-Verlinde ’17, Kitaev-Suh ’18,’19, Yang ’18,

Blommaert-TM-Verschelde ’18, Iliesiu-Pufu-Verlinde-Wang ’19, Saad ’19 ...

Emphasis on on their structure and relation to solvable models
For interpretation in terms of gravitational physics, see e.g.
shockwave scattering TM-Turiaci-Verlinde ’18, bulk reconstruction
Blommaert-TM-Verschelde ’19-’20, TM ’19, geodesic lengths and complexity
Yang ’18...
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JT Quantum Gravity as Schwarzian QM (1)

Jackiw-Teitelboim (JT) 2d dilaton gravity Teitelboim ’83, Jackiw ’85

S = 1
16πG

∫
d2x
√
−gΦ(R − Λ) + 1

8πG

∮
dτ
√
−γΦbdyK

Φ = dilaton field
Λ = −2 → aAdS space → holography

No local dof in 1+1d gravity → bulk is topological

With suitable boundary conditions (asymptotic Poincaré, constant
boundary value of dilaton Φ), description in terms of dynamical
holographic boundary curve with Schwarzian action:

⇒ S = −C
∫
dτ {F , τ} , C ∼ 1

G ,
{
F , τ

}
= F ′′′

F ′ −
3
2

(
F ′′

F ′

)2

Almheiri-Polchinski ’15, Jensen ’16, Maldacena-Stanford-Yang ’16, Engelsöy-TM-Verlinde ’16

F (τ) dynamical time reparametrization in terms of proper time τ

Derivation to be compared to 3d Chern-Simons / 2d WZW CFT
duality where would-be large gauge dofs of Aµ = g−1∂µg are
identified with the physical dof g in the WZW model
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JT Quantum Gravity as Schwarzian QM (2)

Transfer to thermal theory and obtain boundary correlation
functions of JT gravity / Schwarzian QM:

〈Oh1Oh2 . . .〉β =
1

Z

∫
M

[D f ]Oh1Oh2 . . . e
C
∫ β

0 dτ {F , τ }

with F ≡ tan
(
πf (τ)
β

)
,

{
F , τ

}
=
{
f , τ

}
+ 2π2

β2 f
′2

f (τ) is dynamical reparametrization of S1:
f (τ + β) = f (τ) + β, ḟ ≥ 0

Red: holographic boundary
Blue: clock ticking pattern for a specific off-shell
choice of f (τ)
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Boundary bilocal operator

Natural class of bilocal operators:

Oh(τ1, τ2) ≡
(

F ′(τ1)F ′(τ2)

(F (τ1)− F (τ2))2

)h

View as reparametrized boundary CFT two-point function coupled
to the dynamical time variable F (τ)

Also, interpret as result of worldline path integral of scalar particle
of mass m2 = h(h − 1) emitted and absorbed at the boundary at
times τ1 and τ2
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Schwarzian perturbation theory

How to compute with this action? S = −C
∫
dτ
{

tan π
β f (τ), τ

}

Perturbation theory: expand f (τ) = τ + ε(τ), ε(τ) = ε(τ + β)

S = C
2

∫ β
0 dτ

(
ε′′2 − 4π2

β2 ε
′2
)

+O(ε3)

Interpretation in terms of boundary graviton ε(τ) and their
interactions Kitaev ’15, Maldacena-Stanford ’16, Maldacena-Stanford-Yang ’16, . . .

Propagator: ∼ 1/C : (u = 2πτ/β)

〈ε(τ)ε(0)〉 = 1
2πC

[
−1

2 (u − π)2 + (τ − π) sin u + 1 + π2

6 + 5
2 cos u

]
Vertices: . . . ∼ C

Operator:
(

F ′(τ1)F ′(τ2)
(F (τ1)−F (τ2))2

)h
=

(1+ε′1)h(1+ε′2)h

(β
π

sin π
β

(τ1−τ2+ε1−ε2))2h

Leads to 1/C perturbative expansion of bilocal correlators

Higher order corrections get complicated very quickly since:

I More vertices from Schwarzian action

I Non-trivial path-integral measure
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Gauge theory formulation of JT gravity: the BF model

Gauge theory perspective gives exact approach: 1st order
formulation of JT gravity (without boundaries) is given in terms of
SL(2,R) BF theory Fukuyama-Kamimura ’85, Isler-Trugenberger ’89, Chamseddine-Wyler ’89

Now include boundaries, first study compact group G :
2d BF gauge theory on manifold with boundary: TM ’18

SBF[B,A] =
∫
d2x Tr(BF ) + 1

2

∮
dτ Tr(BAτ ) with B|bdy = Aτ |bdy

Path integrate out B ⇒ A = gdg−1

−→ Particle on group manifold G :
S [g ] = 1

2

∮
dτ Tr

(
g−1∂τgg

−1∂τg
)

Structure of theory:

I Hilbert space is determined by Peter-Weyl theorem:
H = {|R, a, b〉 , R = unitary irrep of G , a, b = 1..dimR}
Hamiltonian eigenstates: Ĥ |R, a, b〉 = CR |R, a, b〉

I Coordinate basis {|g〉 , g ∈ G} with overlap
〈g |R, ab〉 =

√
dim RRab(g)

Structure of JT boundary correlation functions Thomas Mertens 8 25
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BF Wilson line

Consider disk amplitude with a boundary-anchored Wilson line:

R

m

n

t b-t

time-sliced as propagation between two pointlike states |1〉 of the
identity group element

〈1| e−τHWR
mne

−(β−τ)H |1〉=
∫
dg〈1|e−τH |g〉Rmn(g)〈g |e−(β−τ)H |1〉

Using 〈g |R, ab〉 =
√

dim RRab(g) and the group integral:∫
dg R1,m1n1(g)R2,m2n2(g)R3,m3n3(g) =

(
R1 R2 R3

m1 m2 m3

)(
R1 R2 R3

n1 n2 n3

)
one finds〈
WR,mn

〉
=δmn

∑
R1,R2,m1,m2

dimR1dimR2 e
−τCR1 e−(β−τ)CR2

(
R1 R R2

m1 mm2

)2
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Gravity from SL(2,R): Path-integral relation

Gravity: SL(2,R) group element g with (gravitational) constraint
at the holographic boundary:

Aτ |bdy = B|bdy =

(
0 {F , τ}
1 0

)
= g∂τg

−1

I Action:
Plugging this into the particle on group G action, leads to
Schwarzian action:
L = Tr(g−1∂τg)2 ∼ {F , τ}

I Operator insertions:
Plugging this into the boundary-anchored Wilson line in
lowest weight state of discrete infinite-dimensional irrep
j = −h of SL(2,R):

WR
00 = ... =

(
F ′(τ1)F ′(τ2)

(F (τ1)−F (τ2))2

)h
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Gravity from SL(2,R): Amplitudes

States:
Hilbert space spanned by constrained (mixed parabolic) matrix
elements, or Whittaker functions: Rk

00(φ) = eφK2ik

(
eφ
)

I k labels continuous irreps with Casimir Ck = k2 + 1/4

I Gravitational constraints restrict representation index to “0”

I Using Gauss coordinates of group element g(φ, γ−, γ+)

For details see Blommaert-TM-Verschelde ’18, Iliesiu-Pufu-Verlinde-Wang ’19, Fan-TM ’21

Role of dimR is Plancherel measure ρ(k) = k sinh(2πk)

Operators:
Wilson lines as lowest weight state matrix elements of
infinite-dimensional discrete irreps: Rh

00(φ) = e2hφ(
k1 h k2

0 0 0

)2

=
∫ +∞
−∞ dφK2ik1(eφ) e2hφ K2ik2(eφ) = Γ(h±ik1±ik2)

Γ(2h)
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JT gravity boundary two-point function

Boundary two-point function: (τ = τ2 − τ1)

〈Oh(τ1, τ2)〉β = τ2 τ1
h =

∫ +∞

0
dk1(k1 sinh 2πk1)dk2(k2 sinh 2πk2)e−τk

2
1−(β−τ)k2

2
Γ
(
h ± ik1 ± ik2

)
Γ(2h)

Other approaches:

I 1d Liouville f ′ = eφ Bagrets-Altland-Kamenev ’16, ’17

I 2d Liouville CFT between ZZ-branes with Liouville primary
operator insertions TM-Turiaci-Verlinde ’17, TM ’18

I Particle in infinite B-field in AdS2 Yang ’18, Kitaev-Suh ’18

I → Minimal string / Liouville gravity as q-deformation of the
BF perspective TM-Turiaci ’19, ’20, TM ’20
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JT gravity two-point function: perturbative properties

Reinstate Schwarzian coupling C in expression:

∫ +∞

0
dk1(k1 sinh 2πk1)dk2(k2 sinh 2πk2)e−τ

k2
1

2C
−(β−τ)

k2
2

2C
Γ
(
h ± ik1 ± ik2

)
Γ(2h)

I 1/C expansion of this expression agrees with the perturbative
approach (at least what can be checked)
TM ’20, Griguolo-Papalini-Seminara ’21

I 1/C expansion can be shown to be asymptotic only TM ’20

→ non-perturbative content ∼ e−#/G

Goes beyond boundary gravitons → Physical intuition??

Exception: 2h ∈ −N
Correlator is zero unless k1 ± k2 ∈ iN → along codimension-1
slice
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Special bilocal correlators

When 2h ∈ −N, redo the derivation of the 3j-symbols (h = −j)

Correspond to Wilson lines in lowest weight states in finite-dim.
representation of SL(2,R) where j ∈ N/2:(
k1 j k2

0 0 0

)2

6= Γ
(
h±ik1±ik2

)
Γ(2h)

=

+j∑
m=−j

(−)m+j

(
2j

m + j

)
δ(k1 − k2 + im)

k1 sinh 2πk1

[
(2ik2 + 2m)

(2ik2 − j + m)2j+1

]
Properties:
I Simpler due to only 1 k-integral → allows us to investigate

perturbative expansions in more detail:

⇒ Convergent 1/C expansion
h

01
2-3

2-
1-2-

I Binomial factors match with binomial expansion of bilocal

operator
(

(F (τ1)−F (τ2))2

F ′(τ1)F ′(τ2)

)j
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Liouville gravity

String theory perspective by embedding JT in Liouville gravity

Results we will find:

I q-deformed results of JT gravity
I Higher genus worldsheet expansion as multi-universe expansion

Definition: Non-critical string from 2d matter CFT coupled to
gravity, or critical string with Liouville + matter + ghost CFT
Polyakov ’81, David ’88, Distler-Kawai ’89 . . .

Liouville gravity: SL + SM + Sgh with conformal anomaly
constraint cM + cL + cgh = 0

I Liouville action: SL = 1
4π

∫
Σ

[
(∇̂φ)2 + QR̂φ+ 4πµe2bφ

]
Q = b + b−1, cL = 1 + 6Q2 > 25
Arises from conformal factor gµν = e2bφĝµν of 2d gravity

I For most of talk: SM = arbitrary CFT with cM < 1
E.g.: (q, p) minimal model: b2 = q/p minimal string

I Sgh is usual bc-ghost theory with cgh = −26

Structure of JT boundary correlation functions Thomas Mertens 15 25
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Liouville gravity: Fixed-length boundaries

Interested in holography → manifold with boundary, of fixed length

For Liouville piece, FZZT-brane boundary Fateev-Zamolodchikov2 ’00:

S∂ = 1
2π

∮
∂Σ

[
QK̂φ+ 2πµBe

bφ
]

µB = boundary cosmological constant

When viewing the theory as 2d quantum gravity, Liouville field
related to metric gµν : ds2 = e2bφdzdz̄
⇒ Boundary length =

∮
ebφ

In path integral
∫
iR dµBe

µB` × e−SL+S∂ yields δ
(
`−

∮
ebφ
)
, a

delta-function on boundary length

Generalization: piecewise constant µB allows boundary with fixed
length segments `1, . . . `n

Structure of JT boundary correlation functions Thomas Mertens 16 25
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Boundary two-point function

Consider two boundary tachyon vertex operators, obtained by
dressing a matter primary ΦM with the Liouville and bc ghost

〈BβBβ〉`1,`2
= Bβ Bβ

`1

`2

Bβ = c ΦMeβφ

Start with Liouville boundary two-point function Fateev-Zamolodchikov2 ’00

d(β|s1, s2) ∼ Γb(2β−Q)Γ−1
b (Q−2β)

Sb(β±is1±is2) where µBi = cosh 2πbsi

→ Transform to fixed length basis for both µB1 and µB2: TM-Turiaci ’20

∼
∫ +∞

0 ds1ds2 ρ0(s1) ρ0(s2)e− cosh 2πbs1`1e− cosh 2πbs2`2 Sb(βM±is1±is2)
Sb(2βM)

where ρ0(s) = sinh(2πbs) sinh
(

2π
b s
)

and βM = b − β
JT limit (b → 0, βM = bh, Sb(bx) ∼ Γ(x)):∫ +∞

0 dk1 dk2 (k1 sinh 2πk1) (k2 sinh 2πk2) e−k
2
1 `JT1 e−k

2
2 `JT2 Γ(h±ik1±ik2)

Γ(2h)
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Quantum group interpretation of Liouville gravity∫ +∞
0 ds1ds2 ρ0(s1) ρ0(s2)e− cosh 2πbs1`1e− cosh 2πbs2`2 Sb(βM±is1±is2)

Sb(2βM)

Liouville gravity amplitudes arise from constrained version of
(modular double of) Uq(sl(2,R)) quantum group, q = eπib

2

Continuous self-dual irreps: Ponsot-Teschner ’99, Bytsko-Teschner ’05 . . .

I Casimir operator Cs ≡ cosh 2πbs is energy variable E

I Plancherel measure: dµ(s) = ds sinh 2πbs sinh 2πs
b = dsρ0(s)

Whittaker function Rεs,00(x) of Uq(sl(2,R))
Obtained in Kharchev–Lebedev–Semenoff-Tian-Chansky ’01 in context of relativistic
Toda chain:

eπi2sx
∫ +∞
−∞

dζ
(2πb)−2iζ/b−2is/b Sb(−iζ)Sb(−i2s − iζ)e−πiε(ζ

2+2sζ)e2πiζx

Leads to correct 3j-symbol with two such insertions and one
discrete irrep insertion:∫ +∞

−∞ dx Rεs1,00(x)e2βMπxRε∗s2,00(x) ∼ Sb(βM±is1±is2)
Sb(2βM)

Structure of JT boundary correlation functions Thomas Mertens 18 25
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Minimal string boundary two-point function (1)

Next: Specify to minimal string

Minimal string: has only primaries from degenerate matter
Virasoro reps:
βM(n,m) = − (n−1)b

2 + (m−1)
2b where n = 1, . . . , p − 1 and

m = 1, . . . q − 1 → finite discrete set

The Sb(2βM) function is evaluated on its poles

⇒ Correlator becomes zero unless numerator also vanishes →
codimension-1 subspace of integral left

If we further specify to (2, p) minimal string, we have βM = −bj ,
j = 0, 1

2 , 1 . . . and Liouville boundary two-point function is
simplified into:

1
Sb(b+bj±is1±is2) =

cosh 2π
b
s1+(−)2j+1 cosh 2π

b
s2

4j
∏j

n=−j (cosh 2πbs1−cosh 2πb(s2+inb))

Structure of JT boundary correlation functions Thomas Mertens 19 25
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Minimal string boundary two-point function (2)

Transform to fixed-length basis leads to somewhat simpler
expression:∫ +∞

0 dsρ0(s) e−`1 cosh 2πbs
∑+j

n=−j
(2j)!e−`2 cosh 2πb(s+inb)∏j

m=−j
m 6=n

(cosh 2πb(s+inb)−cosh 2πb(s+imb))

⇒ By taking the JT limit where b → 0, these boundary tachyon
vertex operators in minimal string limit precisely to the special
operator insertions h ∈ −N/2

Due to this origin in the minimal string, these special operators
form an integrable subclass of operators in JT gravity

Other JT operator insertions (h /∈ −N/2) are outside this class

Structure of JT boundary correlation functions Thomas Mertens 20 25



Minimal string boundary two-point function (2)

Transform to fixed-length basis leads to somewhat simpler
expression:∫ +∞

0 dsρ0(s) e−`1 cosh 2πbs
∑+j

n=−j
(2j)!e−`2 cosh 2πb(s+inb)∏j

m=−j
m 6=n

(cosh 2πb(s+inb)−cosh 2πb(s+imb))

⇒ By taking the JT limit where b → 0, these boundary tachyon
vertex operators in minimal string limit precisely to the special
operator insertions h ∈ −N/2

Due to this origin in the minimal string, these special operators
form an integrable subclass of operators in JT gravity

Other JT operator insertions (h /∈ −N/2) are outside this class

Structure of JT boundary correlation functions Thomas Mertens 20 25



Minimal string boundary two-point function (2)

Transform to fixed-length basis leads to somewhat simpler
expression:∫ +∞

0 dsρ0(s) e−`1 cosh 2πbs
∑+j

n=−j
(2j)!e−`2 cosh 2πb(s+inb)∏j

m=−j
m 6=n

(cosh 2πb(s+inb)−cosh 2πb(s+imb))

⇒ By taking the JT limit where b → 0, these boundary tachyon
vertex operators in minimal string limit precisely to the special
operator insertions h ∈ −N/2

Due to this origin in the minimal string, these special operators
form an integrable subclass of operators in JT gravity

Other JT operator insertions (h /∈ −N/2) are outside this class

Structure of JT boundary correlation functions Thomas Mertens 20 25



Boundary two-point function: higher topology

How do higher genus corrections work for the boundary two-point
function?
For partition function, multiboundary amplitudes and spectral form
factor, this was studied in Saad-Shenker-Stanford ’19

⇒ JT gravity is a matrix integral!

General expectation for correlators: higher genus corrections only
correct the density factor in the correlator; motivated by ETH for
simple operator insertions Saad ’19

ρ0(E1)ρ0(E2) → ρ(E1,E2), ρ0(E ) ∼ sinh 2π
√
E

where ρ(E1,E2) is the JT random matrix pair density correlator
ρ(E1,E2) = ρ(E1)ρ(E2) + ρconn(E1,E2)

How do we reproduce this from higher topology contributions?

Structure of JT boundary correlation functions Thomas Mertens 21 25
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General expectation for correlators: higher genus corrections only
correct the density factor in the correlator; motivated by ETH for
simple operator insertions Saad ’19

ρ0(E1)ρ0(E2) → ρ(E1,E2), ρ0(E ) ∼ sinh 2π
√
E

where ρ(E1,E2) is the JT random matrix pair density correlator
ρ(E1,E2) = ρ(E1)ρ(E2) + ρconn(E1,E2)
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Boundary two-point function: higher topology

Geometrically: Blommaert-TM-Verschelde ’19, Saad ’19

Rule: 1. cut surface along the Wilson line:

2. Add higher topology in all possible ways:
... ...

...

+ +

First two diagrams: disconnected pieces: ρ(E1)ρ(E2)
Last diagram: connected piece ρconn(E1,E2)
Puzzle:
To reproduce the random matrix result, we assumed the Wilson
lines do not self-intersect in the bulk, by e.g. wrapping the “base”
of a handle
→ We will use the embedding in Liouville gravity / minimal string
where calculations are in principle well-understood
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Puzzle: Self-intersecting lines

Start with Liouville gravity bulk-boundary two-point function in
fixed length basis TM-Turiaci ’20

Tα = cc̄ OMe2αφ, α = Q/2 + iP,

`

Tα B =
∫ +∞

0 dsdtρ0(s)e− cosh(2πbs)` cos 4πPt Sb(βM/2±is±it)
Sb(βM)

In JT limit: (P = λ/2b)

`

B ∼
∫ +∞

0 dkdt(k sinh 2πk)e−`k
2

cos 2πλt Γ(h/2±ik±it)
Γ(h)

where a Wilson line encircles a defect insertion once TM-Turiaci ’19

⇒ No multi-wound (i.e. self-intersecting) paths are produced
But higher topology can be added by gluing tubes onto these
defects → Suggests indeed no self-intersections to be considered
We have found this conclusion by taking the JT limit from string
theory where no Wilson lines are drawn in the first place
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Conclusion

We analyzed several structural properties of boundary correlators in
JT gravity:

I Exact disk solution using BF gauge theory
I Special correlators (2h = −N) have simplified structure
I Perturbative expansion is asymptotic, except when 2h = −N
I Liouville gravity and minimal string can be viewed as

q-deformations of JT gravity
I JT special/degenerate correlators arise from a limiting

procedure from the minimal string tachyon vertex operators
I Analyzed aspects of the higher genus expansion → used

worldsheet expansion of Liouville gravity / minimal string as a
guide towards multi-universe expansions in JT gravity

JT gravity is part of a web of exactly solvable models (BF model,
minimal string, 3d pure gravity, 3d Chern-Simons . . .), for which JT
and the Schwarzian model were not studied in the early literature
Hope: leverage this knowledge to learn about quantum gravity!
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Thank you!
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